Parallel and Distributed Computing is one of the most exciting technologies to achieve prominence since the invention of computers in the 1940s. It is expected that the years to come will witness a proliferation of the use of parallel and distributed systems. It is also strongly believed that this method of computing will influence the design of all future computers. This unrivaled development has been facilitated by the rapid advances in electronics and integrated circuit technologies.

The Wiley Series on Parallel and Distributed Computing provides timely treatments of different aspects of parallel and distributed computing, spanning theory, hardware, architectures, languages, applications of new and established techniques, enabling technologies and tools, and application domains, covering topics such as:

- Analysis and design of parallel and distributed algorithms
- Practical and theoretical models of computation
- Design, analysis, and implementation of parallel and distributed computing systems and architectures
- Parallel and distributed languages, compilers, operating systems, tools and environments
- Performance evaluation, modeling, simulation, and visualization of parallel and distributed computing systems
- Reliability and fault tolerance issues in parallel and distributed computers
- Scientific computing, computational science, and supercomputing
- Interconnection networks and optical computing
- Applications of parallel and distributed computing systems (numerical computation, biological computing, remote sensing, computer vision, computer graphics, virtual reality, databases, signal processing, mobile computing, etc.)

Interested authors should submit a prospectus as well as the Wiley Author Questionnaire (please see further info) to Professor Albert Y. Zomaya (zomaya@ee.uwa.edu.au) at

Parallel Computing Research Laboratory
Department of Electrical and Electronic Engineering
The University of Western Australia
Nedlands, Perth, Western Australia 6907

or for further information, please contact Andrew Smith (asmith@wiley.com) at

John Wiley & Sons
605 Third Avenue
New York, New York 10158
New Series Titles Include:

Volume 1.

Introduction to Parallel Algorithms
C. Xavier, St. Xavier College, Palayamkottai, India, and S.S. Iyengar, Louisiana State University, Baton Rouge, Louisiana

This volume fills a need in the field for an introductory treatment of parallel algorithms - appropriate even at the undergraduate level. It features a systematic approach to the latest design techniques, providing analysis and implementation details for each parallel algorithm described in the book. Introduction to Parallel Algorithms covers foundation of parallel algorithms for sorting, searching, and merging; and numerical algorithms.

Volume 2.

Mobile Processing in Distributed and Open Environments
Peter Sapaty, Institute of Mathematical Machines and Systems of the National Academy of Sciences, Ukraine
ISBN 0-471-19572-3 ♦ Feb. 1999 ♦ 432pp. ♦ $84.95

The creation of intelligent agents in software has recently become a large component of Internet-based computing. One feature which is crucial to the success of these agent systems is that they be platform independent, or capable of running on any type of computer present on the network. This is the primary appeal of the new Java programming language. Application fields include economic and military simulations, control engineering in a distributed environment and management of complex infrastructures such as air and space defense systems. This title provides several examples and demos of the WAVE language used to solve problems in a distributed environment. The book teaches readers how to optimize computer network performance, efficiently manage databases, and how to search numerous computer for a specific piece of information.

Volume 3. (Coming Soon!)

Parallel and Distributed Simulation Systems
Richard M. Fujimoto, Georgia Institute of Technology, Tucker, GA

Parallel and Distributed Simulation Systems (PADS) is the technology enabling a simulation program to be executed on parallel/ distributed computer systems that models the behavior of some real or imagined system over time, simulations are widely used today to analyze the behavior of systems such a air traffic control and future generation telecommunication networks without actually constructing the systems and situations of interest. PADS are also used to create computer generated virtual worlds into which humans and/or physical devices are embedded. In addition to detailing the benefits derived from utilizing PADS technology, applications, hardware platforms, and underlying technologies vital to understanding the growing topic. Written by a well respected researcher and teacher in this field, Dr. Fujimoto provides a comprehensive text on this growing topic of PADS.
Forthcoming Titles:

Surviving the Design of Microprocessor and Multimicroprocessor Systems: Lessons Learned
Veljko Milutinovic of The University of Belgrade

This book covers current issues in advanced computer architecture such as caching, instruction level parallelism, system bottlenecks, multithreading and multiprocessing. From the Foreword, written by Michael Flynn of Stanford University, “The result is a necessarily somewhat eclectic, personal statement by one of the leaders of the field about the important issues that face us at this time.”

Distributed Object Computing: A CORBA Perspective
Zahir Tari of Royal Melbourne Institute of Technology and Omran Bukhres of Purdue University

Object-oriented computing has become the de facto standard in writing software applications for parallel and distributed computer systems. This book is written to teach the fundamentals of CORBA, to be used as a textbook as well as a reference.

Bio-Inspired Solutions to Parallel Computing Problems
Albert Y. Zomaya of The University of Western Australia, Fikret Ercal of University of Missouri, and Stephen Olariu of Old Dominion University

This book explores the use of ideas from nature to solve problems in computation. Genetic algorithms, neural networks, brownian motion and DNA computing are ideas which have applications to many areas of science, including computer simulation of natural processes. This book uses these techniques to further the design of computer hardware and software.

Performance Evaluation and Characterization of Parallel and Distributed Computing Tools
Salim Hariri of The University of Arizona and Sung Yung Park of Bell Core

This book is intended to cover a wide variety of approaches to parallel computing. The art of constructing hardware and software which allows multiple processors to function together has been approached from several viewpoints, each of which involve tradeoffs between performance and cost, among other factors. Presented here is a thorough survey of the most successful tools in use and case studies of particularly successful implementations.
Practical PRAM Programming
Joerg Keller of FernUniversitaet Hagen, Christoph Kessler of Universitat Trier, and Jesper Traeff of NEC Europe Ltd.
The topic of Parallel Random Access Memory, or PRAM, is a concept which allows programmers to design algorithms for use on parallel computers. This book includes a number of PRAM implementations, is useful as a textbook on parallel programming and includes a parallel programming language called Fork95, a compiler and demonstration software with which the user can work and experiment.

New Parallel Algorithms for Direct Solution of Linear Equations
C. Siva Ram Murthy of Indian Institute of Technology, K.N. Balasubramanya Murthy of Malnad College of Engineering, and Srinivas Aluru of New Mexico State University
Systems of linear equations arise frequently in engineering systems analysis, and methods of solving such systems are an area of research in their own right. Solution of these algorithms on parallel computers allows for increased speed, fault tolerance and scalability - in short, increased productivity. This book presents new research in this area, representing a new approach to the problem.

Parallel and Distributed Computing: A Survey of Models, Paradigms and Approaches
Claudia Leopold of Institut Fur Informatik, Friedrich Schiller Universitat Jena
The use of parallel and distributed computing has risen dramatically in the past few years, giving rise to a variety of projects, implementations and buzzwords surrounding the subject. In this book, Dr. Leopold will survey different methodologies currently used in constructing parallel and distributed systems at an abstract level.

Computational Collective Intelligence
Tadeusz Szuba of Kuwait University
ISBN 0-471-34966-6, Estimated Publication Date - November 2000
Bringing together elements of artificial intelligence, information theory and distributed computing, the author proposes a new theory for understanding collective intelligence. This research is in one area of non-deterministic computing, in which random variations in a program are allowed, and the program (and solution) evolve. This book will have broad appeal to researchers in the fields of evolutionary computing, genetic algorithms, neural networks, and other types of non-deterministic computing.

For orders, please call toll free 1-800-CALL-WILEY or order online at http://catalog.wiley.com
In order to allow is to evaluate your book proposal effectively, please provide a prospectus that highlights what you will do and why it is worth doing. Your thoughtful response to these two issues will be very helpful in obtaining a positive decision to publish your book. It will be necessary for me to have your proposal reviewed by other reviewers, and the people at Wiley will wish answers to these questions also. Please make every effort to explain:

- exactly what you are trying to do,
- exactly why it is worth doing, and
- why you think the resulting book will be marketable,
- and to whom.

You may find it very helpful to use a word processor in preparing your prospectus so that you will have as much space as you will need to provide your response to the following important issues.

I. General Information

1. Proposed Book Title and Subtitle:

2. Author(s)/Editor(s) name, Address, Affiliation, Phone Number, Facsimile number, and e-mail address:

3. Expected month and year of completion:

4. Estimated length in double spaced manuscript pages OR printed book pages (one printed book page is equivalent to approximately 500 words)

5. Estimated number of drawings/diagrams Will they be sketches or camera ready (drafted or computer generated)? Estimate number of photographs

II. Facts About Your Book

1. Provide a brief and concise overview of your book’s subject and purpose.
2. Why is our book needed? What is your rationale for writing it? What group(s) constitute the intended audience? In what ways will your book directly benefit this audience?

3. What will be the most outstanding features of your book?

4. Are there recent developments in the field that will help us better understand your book and the need for it?

5. Competition (any books that you think cover the same material as your book, and why your book is better) Please cite Author, Title, Publisher, and year of publication.

Please also attach an outline for the book to this prospectus and enclose as many sample chapters for review as are now available.