Week 4 - Lecture 1

• What is in a user model

• Classes of components

• Management of uncertainty

• Case studies - generic modelling systems

• Student modelling approaches

• Omissions: group models
components - beliefs about the user

<table>
<thead>
<tr>
<th>Description of meaning of a component</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system believes the user ...</td>
<td></td>
</tr>
<tr>
<td>likes large fonts in screen displays</td>
<td>preference</td>
</tr>
<tr>
<td>dislikes Carr-Boyd music</td>
<td>preference</td>
</tr>
<tr>
<td>prefers to learn from examples rather</td>
<td>preference</td>
</tr>
<tr>
<td>than abstract descriptions of ideas</td>
<td></td>
</tr>
<tr>
<td>knows the undo command of the text editor</td>
<td>knowledge</td>
</tr>
<tr>
<td>believes that the sun rotates around the earth</td>
<td>knowledge</td>
</tr>
<tr>
<td>knows that if (x => y) and (y => z) then (x => z)</td>
<td>knowledge</td>
</tr>
<tr>
<td>believes text editors have a facility for undo-ing the last action</td>
<td>knowledge</td>
</tr>
<tr>
<td>wants to listen to new music</td>
<td>goals</td>
</tr>
<tr>
<td>wants to learn about the text editor</td>
<td>goals</td>
</tr>
<tr>
<td>was born in 1990</td>
<td>attribute</td>
</tr>
<tr>
<td>has low vision</td>
<td>attribute</td>
</tr>
</tbody>
</table>
Preferences

• Example: large fonts

• cf flags or preferences

• minimalist user modelling

• Example: Carr-Boyd music

• foundation for browsing, filtering and retrieval

• prefers to learn from examples
Knowledge

• knows the undo command

• believes the sun rotates around the earth

• knows $x \Rightarrow y, y \Rightarrow z$ means $x \Rightarrow z$

• believes text editors have undo

• knowledge v belief

• power of modus ponens

• user’s default assumption
Goals

• wants to listen to new music

• wants to learn about the sam text editor

• commonly built into assumptions in system

• eg. music recommender site

• foundation of teaching system - or teacher

• cf - wants to pass the exam
Other attributes

• was born in 2000

• has low vision

• => large fonts, children’s music
Management of uncertainty

- Inconsistency part of domain
 - esp modelling people’s knowledge
 - learning, forgetting
 - tastes change over time
 - interests change temporarily
 - eg. news item read once,
 - trip to Italy
 - music preferences while working

- Noisy data about the user

- Uncertain inferences about user

- Lack of data about the user
 - start up problem
 - lack of data after user changes
Management of uncertainty

- External sources cause inconsistency
 - unreliable sensors
 - users make slips
 - user misunderstands question

- External sources cause inconsistency
 - Internal interference
 - Beethoven IV ++, Beethoven VI –
 - predict Beethoven V?
 - user states Beethoven V –
 - foundational reasoning v coherence reasoning
Grundy - stereotypes

A stereotype represents a collection of attributes that often co-occur in people. ... they enable the system to make a large number of plausible inferences on the basis of a substantially smaller number of observations. These inferences must, however, be treated as defaults, which can be overridden by specific observations. (Rich, 1989:35)

- user self-description ==> book recommendations
 - eg athletic

- trigger

- inferences
 - eg motivated by excitement
 - attributes of strength and perseverance
 - interested in sports
 - each with a strength rating

- recommended books matching those properties

- user responses used to adjust ratings

- double stereotype (Chin, Unix consultant)
 - user’s actions ==> expertise
 - expertise level ==> predicted knowledge
BGP-MS

• Belief, Goal and Plan Maintenance System (Kobsa et al)

• concepts in inheritance hierarchy
 – role predicate for relations allowed
 – restrictions on attributes for an instance
 – modality - attribute necessary?

• concepts organised into partitions
 (also in inheritance hierarchy)
 – SB, UB, ShB
 – SBUBSBUBUB...
 – SBUW

• sophisticated stereotype
 – trigger, retraction

• implicit inference rules
UMT

- UM-tool
- database of user models
- stereotypes in multiple inheritance hierarchy
- database of possible models for current user
- rule-base of constraints
- inference rules
- consistency manager ATMS-like for possible models, each a self-consistent view of the user
Doppelganger

- news of the future

- user model server with a centralised database of user models

- many sensors collecting information about the user

- toolkit of learning techniques

- models - Lisp-like special purpose language

- domain models eg news preferences

- conditional models eg. morning news preferences

- context-aware approach - active badge, smart chair

- community models - recomputed each night
 - probabilistic membership
Student modelling

- knowledge and misconceptions
- executable models
- cognitive validity
- overlay
- differential
- bug model
TAGUS

• simulation of the learner’s reasoning

• beliefs, goals, problem solving capabilities and strategies

• stereotypes

• reasoning maintenance system

• Examples of beliefs
 - planet
 - earth
 - moon
 - planet(earth)
 - revolves-around(moon, earth)

• Simulated reasoning
 – eg modus ponens

• User monitor behaviour eg give up on hard tasks

• maintained consistency
THEMIS

• focus on inconsistency
 – changed of mind
 – hold contradictory beliefs

• some belief revision

• model kept in extended Prolog
 – values: true, false, unknown or fail

SMMS

• belief revision

• only applied to deductive reasoning

• not to stereotypes

• represented concepts as \{novice, average, expert, unknown\}
Summary

<table>
<thead>
<tr>
<th>Thing modelled is whether the user ...</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>is an athletic person</td>
<td>GRUNDY</td>
</tr>
<tr>
<td>is motivated by excitement</td>
<td>GRUNDY</td>
</tr>
<tr>
<td>has attribute of strength and perseverance</td>
<td>GRUNDY</td>
</tr>
<tr>
<td>is interested in sports</td>
<td>GRUNDY</td>
</tr>
<tr>
<td>knows the concept otitis media (with strength 75)</td>
<td>UMFE</td>
</tr>
<tr>
<td>has a goal to invest 10,000 dollars</td>
<td>GUMAC</td>
</tr>
<tr>
<td>wants to print a document</td>
<td>BGP-MS</td>
</tr>
<tr>
<td>believes that inkjet printers are printers</td>
<td>BGP-MS</td>
</tr>
<tr>
<td>and system have a mutual belief that</td>
<td></td>
</tr>
<tr>
<td>Peter gave Mark a book</td>
<td>BGP-MS</td>
</tr>
<tr>
<td>nationality is French</td>
<td>UM-tool</td>
</tr>
<tr>
<td>has general interest in literature</td>
<td>UM-tool</td>
</tr>
<tr>
<td>has the name Jon Orwant</td>
<td>Doppelganger</td>
</tr>
<tr>
<td>is interested in the Olympics</td>
<td>Doppelganger</td>
</tr>
<tr>
<td>likes the source USA today</td>
<td>Doppelganger</td>
</tr>
<tr>
<td>knows about the notions of a planet and its moon</td>
<td>TAGUS</td>
</tr>
<tr>
<td>believes the earth is a planet</td>
<td>TAGUS</td>
</tr>
<tr>
<td>believes that moons revolve around a planet</td>
<td>TAGUS</td>
</tr>
<tr>
<td>believes the moon revolves around the earth</td>
<td>TAGUS*</td>
</tr>
<tr>
<td>believes Paris is in a torrid zone</td>
<td>THEMIS</td>
</tr>
<tr>
<td>believes the Lisp car function returns a list</td>
<td>SMMS</td>
</tr>
<tr>
<td>... containing the first element of the given list</td>
<td></td>
</tr>
<tr>
<td>knows the concept of recursion</td>
<td>SMMS</td>
</tr>
</tbody>
</table>