1. A simple (hole-free) polygon P is called star-shaped if it contains a point q such that for any point p in P the line segment pq is contained in P, see Fig. 1. Give an $O(n \log n)$ time algorithm, or an $O(n)$ randomised expected time algorithm, that decides if a given polygon is star-shaped or not.

2. Exercise 5.3 in the course book.

3. Exercise 5.9 in the course book.

4. Exercise 5.10(a-b) in the course book.

5. Point queries among rectangles. Let P be a set of n rectangles in the plane. Report all rectangles in P that intersects a query point q. Describe a data structure for this problem that uses $O(n \log n)$ preprocessing, $O(n)$ storage and $O(n^{3/4} + k)$ query time.

\textbf{Hint:} How can a rectangle in 2D be described in 4D? (How can a rectangle in 1D be described in 2D?)

6. Give an algorithm that computes in $O(n \log n)$ time a diagonal that splits a simple polygon with n vertices into two simple polygons each with at most $\lfloor 2n/3 \rfloor + 2$ vertices.

\textbf{Hint:} Use the dual graph of a triangulation.

\textbf{Bonus:} Prove that any polygon P with n vertices admits a triangulation, even if it has h polygonal holes. Prove that the number of triangles in the triangulation is $n + 2h - 2$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{(a) A star-shaped polygon since p can "see" all of P. (b) An example of a simple polygon that is not star-shaped.}
\end{figure}

Due: 28th of April 2005 at 4pm.