
Graph DrawingGraph Drawing
Algorithmic and Declarative g

Approaches

Peter Eades
University of Newcastle, Australia

University of Limerick, IrelandUniversity of Limerick, Ireland

1

Graph DrawingG ap aw g
The classical graph drawing problem is to develop

algorithms to draw graphs.

The input is a
h ith

The output is a drawing of
graph with no
geometry

the graph; the drawing
should be nice

A - B, C, D
B - A, C, D

C

?C - A, B, D, E
D - A, B, D, E
E C D

A B E?

2

E - C, D D

Tokyo subway map

3

psfile

4

Graph Drawing

The output picture is used in a

file edit insert layout
The input graph is
some relational

system design/analysis tool.
_ X

agnt(monkey eat)

monkeyagnt
some relational
information.
agnt(monkey, eat).
inst(eat, spoon).
obj(eat, walnut).
part of(walnut shell)

eat walnut

inst

obj

part of?part_of(walnut, shell).
matr(spoon, shell).

spoon shell

inst part_of

matr

?

The graph drawing problem is to design

5

techniques to give good drawings of graphs.

Approaches

A graph drawing function
A graph drawing function
is an optimization
algorithm for specific

consists of a set of rules for a
drawing, and a generic method
for obtaining a dra ing thatalgorithm for specific

optimization goals.
for obtaining a drawing that
satisfies the rules.

AlgorithmicAlgorithmic
Person Declarative

Person

6

Graph Drawing

1. User requirements

2. Established techniques

3. Algorithmic and Declarative
Approaches

7

User requirements

There are 4 main requirements, from the user’s point ofThere are 4 main requirements, from the user s point of
view (Tao Lin 1992):

1. readability: the drawing should be easy to understand.

2 conformance: the drawing should conform to the2. conformance: the drawing should conform to the
diagrammatic conventions of the application.

3. controllability: specific users need to control the
drawing functions.

4. efficiency: the drawing functions should be efficient.

8

Readability

The drawing should be easy to read, easy to understand,
easy to remember, beautiful.

eat walnutagnt obj
monkey eat

h ll

agntobj

shell inst part_of monkey inst part_of

spoonwalnut matr spoon shellmatr

9

less readable more readable

Readability

Some measures of readability are available:

Avoid
edge crossings

monkey eat

shell

agnt

Avoid

obj

shell inst part_of edge bends

spoonmatr Avoid
long edges

walnut

10

less readable
g g

Readability

i i d
There are many readability criteria for good diagrams:

• minimum edge
crossings,

• make edges asmake edges as
straight as
possible,

eat walnutagnt obj

• minimum edge
lengths,

i
monkey inst part_of

• maximum
resolution,

spoon shellt

and many more.

spoon shellmatr

11

Conformance

The graph drawing must conform to the rules of the
application domain. Specific domains have their ownapplication domain. Specific domains have their own
diagramming conventions. Sometimes, these have
implications for graph drawing.

These are best expressed as constraints:
 left_of(A,B): node A should appear to the left of node B.
 above(A,B): node A should appear above node B.()
 close_to(A,B): node A should appear close to node B.
 circle(A,B, …,): nodes A,B, … , should appear around (, , ,) , , , pp

in a circle.
 horizontal(A,B): nodes A and B should share a

12

horizontal line.

Conformance

Examples:
• In a call graph, the left-right order of nodes called from

function A should be the same as the order of the calls in
th dthe source code.

• In a family tree females should be to the left of males.

main()
{ main{

readdata(…);
validate(…); readdata printf();
printf(…);

} validate

13

Controllability

Specific users at specific times need to control the
layout of the graph.

Again, the user’s control can be expressed as the
imposition of constraints:

• center(A): node A should appear near the center of
the page.

• closer(A,B,C): node A should be closer to C than B.

Constraints for user control are not very different from
t i t f f Th i diff iconstraints for conformance. The main difference is

that user control constraints cannot be hard coded.

14

Efficiency

Efficiency requirements vary:y q y
 Interactive systems require a response

within a fraction of a second.
Users may wait for several minutes for

large printed diagrams.

In terms of computational complexity, algorithms
should have complexity O(n2).

15

Established techniquesEstablished techniques

• The Sugiyama algorithm

• TRIP

• Springs and cost function
techniquestechniques

16

The Sugiyama algorithm

A layered network is a directed
acyclic graph whose nodes are

L6
acyclic graph whose nodes are
partitioned into layers L1, L2, ...,
Lk.

L5

k

These networks are drawn so that:
 the nodes of layer Lm lie on

L4

the nodes of layer Lm lie on
the line y=m.

 edges are monotonic in the y
L3

g y
direction.

The flow is represented from the
L2

top to the bottom. L1

17

The Sugiyama algorithm

Layered networks are often used to represent
dependency relations.

Sugiyama et al. developed a simple algorithm for
drawing layered networks in 1979.

The algorithm aims for
readability:

quadrilateral

g y

eadab y
• few edge crossings
• edges as straight as

possible parallelogramtrapeziumpossible
• nodes spread evenly

over the page

p g

t l di drectangle diamond

18

square

Sugiyama algorithm: 4 steps

1 Eliminate directed cycles1. Eliminate directed cycles.
2. Place each node into a layer.
3 Order the nodes ithin each3. Order the nodes within each

layer to avoid edge crossings.
4 Straighten the long edges4. Straighten the long edges.

Each step has a correspondingEach step has a corresponding
optimization problem.

We will just look at steps 2 and 3.

19

Sugiyama Step 2: Layering

Step 2
 Input: an acyclic directed graph
Output: an assignment of nodes to layers, such that all

edges are directed downward.

A
A - B C D

B

A - B, C, D
B - C, D, G
C - E, G

DC

E

D - E
E - F, G, H
F

step 2

F

E

G H

F -
G -
H -

20

H -

Sugiyama Step 2: Layering

Step 2
 There are several alternative layering algorithms.
 The best algorithm uses linear programming: it

minimizes the total y extent of the edges.

A
A B C D

B

A - B, C, D
B - C, D, G
C - E, G

DC
C E, G
D - E
E - F, G, H

step 2

F

E

G H

F -
G -
H

21

F G HH -

Step 3: re-arranging each layer

21 2 1

543

1

54 3

76

step 3
76

8 9
step 3

9 8

1210 11 121011

13 14

21 d i

1413

22

21 edge crossings 5 edge crossings

Step 3: the sweep

Step 3 uses a “layer-by-
l ” f b tt

21 L6free
layer sweep”, from bottom
to top.543 L5

6

freefixed

At each stage of the
sweep we:

76 L4freefixed
sweep, we:
 hold one layer fixed,

and
8 9 L3freefixed

and
 re-arrange the nodes

in the layer above to
1210 11 L2freefixed

y
avoid edge crossings.13 14 L1

fixed

23

Step 3: re-arranging each layer

21 8 9free L3

543 1210 11fixed L2

76

8 9 89 L3
L3

1210 11
1210 11 L2

L2

13 14

24

Step 3: re-arranging each layer

The problem of finding an optimal solution, even for two

Lf

layers with one layer fixed, is NP-hard.

Li

Li+1

fixed

free

Heuristics
Barycentre algorithm: place each free node at the

Li

Barycentre algorithm: place each free node at the
barycentre (average position) of its fixed neighbors.
Median algorithm: place each free node at theMedian algorithm: place each free node at the

barycentre (average position) of its fixed neighbors.
Both algorithms are efficient, and perform well in practice.

25

g , p p

Remarks

The Sugiyama algorithm works quite
well in practice.well in practice.

It has been adopted in most graph
drawing packages.g p g

© Tom Sawyer
Software

26

Sugiyama technique: Remarks

Sugiyama algorithm
1. readability: Excellent.
2. conformance: Poor.
3. controllability: Poor.
4. efficiency: Good.

27

TRIP

Kamada (1989) implemented a pipeline of three steps, in () p p p p
an attempt to provide a general visualization system.

logical geometric

text

g
objects

and
l ti

g
objects

and
l ti

picture1 2 3

relations relations

(Prolog) (Prolog)

The system is TRIP: TRanslation Into Pictures.

28

TRIP

text
logical

objects&
geometric
objects& picture1 2 3

1. Analysis

j
relations relations

 text -> logical objects and relations
2. Visual mapping
 logical objects -> geometric objects
 logical relations -> geometric relationsg g
 encodes requirements of visualization in a constraint-

style prolog
3. COOL
 geometric objects and relations -> picture

29

 constraint resolution

TRIP pipeline step 1: Analysis

Step 1: Analysis
Th t t i l d i t l i l bj t d l ti

Text Logical Objects and Relations

• The text is analyzed into logical objects and relations.

Text
Mike is the boss of
Mary Mark and

Logical Objects and Relations
Boss(Mike,Mary),
Boss(Mike Mark)Mary, Mark and

Marcia.
Mike is male, Mary

Boss(Mike,Mark),
Boss(Mike,Marcia),
Male(Mike), Female(Mary),

1
Mike is male, Mary
and Marcia are
female.

Male(Mike), Female(Mary),
Male(Mark), Female(Marcia),
Clerk(Mike), Clerk(Marcia),

Mike, Marcia, and
Mary are clerks, and

k h

() ()
Clerk(Mary), Secretary(Mark).

30

Mark is the secretary.

TRIP pipeline step 2: visual mapping

Step 2. The visual mapping

Step 2
Circle(X, Red) :- Male(X), Clerk(X).
Box(X, Blue) :- Male(X), Secretary(X).
Line(X, Y) :- Boss(X, Y).
Left_of(X, Y) :- Boss(Z, X), Boss(Z, Y),

Clerk(X), Secretary(Y).
Above(X, Y) :- Boss(X, Y).
Line(X,Y) :- Boss(X,Y).

31

TRIP pipeline step 2: visual mapping

Step 2. The visual mapping: output

Male(Mike), Female(Mary), Male(Mark), Female(Marcia),
Cl k(Mik) Cl k(M i) Cl k(M) S t (M k)Clerk(Mike), Clerk(Marcia), Clerk(Mary), Secretary(Mark),
Circle(Mike, Red), Circle(Mary, Red), Box(Mark, Blue),

Circle(Marcia Red)Circle(Marcia, Red),
Left_of(Marcia, Mark), Left_of(Mary, Mark),
Boss(Mike Mar) Boss(Mike Mark) Boss(Mike Marcia)

2
Boss(Mike, Mary), Boss(Mike, Mark), Boss(Mike, Marcia),
Line(Mike, Mary), Line(Mike, Mark), Line(Mike, Marcia).
Ab (Mik M) Ab (Mik M k)Above(Mike, Mary), Above(Mike, Mark),

Above(Mike,Marcia)

32

TRIP pipeline step 3: COOL

3
Mike

3

Mary Marcia Mark

St 3 COOL

Mary Marcia Mark

Step 3: COOL
• COOL is a constraint resolution system.

All b t th l t l l hi i iti h dl d• All but the lowest level graphics primitives are handled
by COOL.

• COOL handles overconstrained systems by least• COOL handles overconstrained systems by least
squares approximations.

• Rendering the output of COOL is simple

33

• Rendering the output of COOL is simple.

TRIP: Remarks

The visual mapper (Step 2) of TRIP is easy to adjust
to a specific application. It can be adjusted, for
instance:
 To encode conformance criteria (to conform to

th di ti ti f ththe diagrammatic conventions of the
application), for example:

diagrammatic conventions for family trees– diagrammatic conventions for family trees,
– diagrammatic conventions for conceptual

graphsgraphs.
 To allow specific users to control the drawing

functions (controllability).

34

functions (controllability).

TRIP: Remarks

But TRIP drawings fail on many readability criteria
 It is difficult to express global readability goals

(such as minimizing crossings, minimize
bends, or minimize area) in TRIP.

TRIP depends crucially on constraint resolution.
TRIP l ti l l (f i i TRIP was relatively slow (for an interactive
graphics system).

Constraint s stems sometimes ha e strangeConstraint systems sometimes have strange
results.

35

TRIP: Remarks

TRIP
1. readability: Poor.
2. conformance: Excellent.
3. controllability: Excellent.
4. efficiency: Poor.

36

Spring techniques

Spring techniques are quite popular.
1. Place forces between pairs of nodes; for p

example:
– spring forces for edges
– gravitational repulsion for nonedges

2. Find a zero force configuration.

1. 2.

37

Spring techniques

38

© Sander

Spring techniques

Spring algorithms can be viewed as cost function
techniques:q
1. Define a cost function which measures ugliness.
2. Find a drawing which minimizes the cost function.g

For spring algorithms, the ugliness is energy.

high energy low energy

39

(ugly)
low energy
(beautiful)

Spring techniques

Spring techniques can be constrained in various ways.

N il b d t h ldNails can be used to hold
a node in place.

Magnetic fields and magnetized
springs can be used to align nodes

Attractive forces can be

in various ways.

Attractive forces can be
used to keep clusters

together.

These constraints (and others) can be used for

40

conformance and controllability.

Cost function techniques

More generally, cost function techniques have two parts:g y q p

1. A model: a cost function which measures ugliness.g
ugliness 1c1 + 2c2 + … + kck,

where ci measures one aspect of the ugliness of the i p g
drawing, and i is a weight.

2. A method to find a drawing which minimizes the cost
function, that is, minimizes ugliness.

41

Cost function techniques

The second part (the method) can be:The second part (the method) can be:
 a continuous optimization technique (if the cost

function is continuous and smooth) orfunction is continuous and smooth), or
 an Integer Linear Programming technique (if the

cost function and constraints are linear) orcost function and constraints are linear), or
 a Soft Computing technique (if all else fails).

In general, there is a trade-off between generality and
efficiency: the more general the model, the lessefficiency: the more general the model, the less
efficient the method.

42

Cost function techniques

Tutte (1960)
• The model uses rubber bands and nails.
• The method uses Gaussian elimination.

Kamada-Kawai (about 1987)
• The model uses springs (and integrates with TRIP).p g (g)
• The method is from classic Numerical Analysis, and is

relatively fast.y

Frick (about 1994)()
• The model uses forces.
• The method uses some randomization, similar to

43

,
simulated annealing. It is relatively fast.

Cost function techniques
Marks (early 1990s)
• The model copes with geometric constraints called

“Vi l O i ti F t ”“Visual Organization Features”.
• The method is a genetic algorithm.

Davidson-Harel (1992)
Th d l f f l d i• The model uses a few forces plus edge crossings.

• The method is simulated annealing.
The Davidson-Harel technique showed the worst

aspects of soft computing: very high computational
cost for very little effectcost for very little effect.

two interesting techniques: Mendonca (1991) and

44

… two interesting techniques: Mendonca (1991), and
Branke-Utech (1998)

Cost function techniques

Mendonca
• Model: forces plus edge crossingsModel: forces plus edge crossings
• Method: simulated annealing
Mendonca aimed to create good drawings of ER / NIAMMendonca aimed to create good drawings of ER / NIAM

diagrams.

Flexibility in Mendonca’s technique.
ugliness 1c1 + 2c2 + + kckugliness 1c1 + 2c2 + … + kck

 It is easy to adjust 1, 2, … k to the needs of a
specific application area (conformance), or a specific p pp (), p
user (controllability).

 Further, the system can learn appropriate values for

45

y
1, 2, … k, in a feedback control loop.

Cost function methods

Mendonca: drawing NIAM / ER diagrams

graph Soft computing graph
d igraph p g

method (S.A.) drawing

editor


graph

drawing
learning
method

46

Cost function methods

Mendonca: remarks
 The methods are extremely expensive

t ti llcomputationally.
 The number of experiments was small, but

perhaps demonstrated the feasibility ofperhaps demonstrated the feasibility of
using soft computing techniques to handle
user controllability without explicit useruser controllability without explicit user
interaction.

47

Cost function methods

Branke-Utech: Find a technique for drawing layered q g y
networks, better than the Sugiyama technique.

Model: cost function is
1c1 + 2c2

where
c1= a measure of the quality of the layering,1

c2= number of edge crossings,
1, 2 are constants.1 2

Method: a genetic algorithm.

48

g g

Two techniques for layered digraphs

Sugiyama technique
successively solves four

Branke-Utech technique
Using G.A’s, the

optimization problems:
1. Eliminate directed

l

g
optimization problems in
Steps 2 and 3 are solved
t thcycles.

2. Place each node
into a layer

together.
This gave much better
(more readable) results forinto a layer.

3. Order the nodes
within each layer to

(more readable) results for
small graphs (less than 50
nodes).within each layer to

avoid edge
crossings.

nodes).
However, the
computational resources g

4. Straighten the long
edges.

p
are excessive, making it
impractical.

49

Cost function techniques: remarks

The Brake-Utech technique illustrates someThe Brake-Utech technique illustrates some
advantages and disadvantages of Soft
Computing:p g
 The flexibility of Soft Computing can give

good results.
But the computational cost can be high.

50

Cost function techniques: Remarks

Springs …. Soft Computing
1. readability: Average …. Good
2. conformance: Average …. Good
3. controllability: Average …. Good
4. efficiency: Average …. Poor

51

Aside: Other Graph Drawing techniques

a b c
d

e

h i f

g

Several treeSeveral tree
drawing
algorithms

a

Three

g
b c

d e f g Three
dimensional
methodsh i

d e f g

52

Other Graph Drawing Methods

The GIOTTO
method

Graph grammar
methods

method

methods

53

Algorithmic and Declarative Approaches to Layout

There are two basic approaches to graph drawing:
Algorithmic Approach: eg, Sugiyama method,

GIOTTO t t d i th d i ibilitGIOTTO, most tree drawing methods, visibility
methods, ...

Declarative Approach: eg TRIP graphDeclarative Approach: eg, TRIP, graph
grammar approaches, some soft computing
methods, ...methods, ...

Both have advantages and disadvantagesBoth have advantages and disadvantages . . .

54

Algorithmic and declarative approaches

Springs
Soft

TRIP
Sugiyama,

readability ****

Springs
Comp

TRIP
GIOTTO

** *** *
conformance
controllability

*
*

**
**

efficiency **** ** * *

D l tiDeclarative

Algorithmic

Note: Soft computing may offer a good compromise between
algorithmic and declarative approaches

55

algorithmic and declarative approaches.

Algorithmic Approach

Algorithmic Approach: a graph drawing function is an
optimization algorithm for specific optimization goals.optimization algorithm for specific optimization goals.

Disadvantages
• fixed, hard coded optimization

Advantages
• efficient p

goals
• often bound to graph-theoretic

• mathematical
guarantees of

classes (eg trees, directed
graphs, planar graphs)
ft b d t ifi

effectiveness
• good for readability

• often bound to specific
diagrammatic conventions
often requires specialist training

56

• often requires specialist training

Algorithmic and Declarative Approaches to Layout

Declarative Approach: a graph drawing function consists
of a method for specifying requirements, and a p y g q ,
generic method for obtaining a drawing according to
the requirements.

Advantages
user controllable

Disadvantages
slow sometimes very• user controllable

• conformance to
different applications

• slow, sometimes very
slow

• mathematical guaranteesdifferent applications
is easy

• mathematical guarantees
are mostly impossible

• some techniques performsome techniques perform
badly with global
readability goals

57

Integration
Some systems integrate algorithmic/declarative approaches,

for example, TreeSnake (Tao Lin 1992):

user user user user user user user user

Constraints for controllability

Domain1 Domain3Domain2

Constraints for conformance

Algorithm1 Algorithm4Algorithm3Algorithm2

Al i h i lki

58

Algorithmic toolkit

Integration
TreeSnake

user user user user user user user user

Constraints for controllability
The user controls the drawing via constraints.g

Domain1 Domain3Domain2

Constraints for conformance
A domain modeller customizes the algorithm

Algorithm1 Algorithm4Algorithm3Algorithm2

toolkit with a set of constraints.

Algorithmic toolkit
An algorithm specialist encodes an algorithm

59

toolkit, with constraint handling ability.

Algorithmic and declarative approaches

TreeSnake demonstrated a healthy integration of algorithmic
and declarative techniques.

d bilit ****

TreeSnake

q

readability
conformance

controllability
efficiency

TreeSnake had many limitations, for example:
 It only covers rooted trees.
 The constrain system was very limited.

60

However, it did demonstrate the feasibility of integration.

Final remarks

Algorithmic and declarative approaches to Graph
Drawing both have advantages and disadvantages.

f ff If efficiency problems can be overcome, then
perhaps Soft Computing could offer a reasonable
compromise between the two approachescompromise between the two approaches.

 Integration of constraint handling and classical
algorithmics could offer another compromisealgorithmics could offer another compromise.

61

