INFO4990 IT Research Methods

Research Ethics
Lecture by Alan Fekete,
based in part on slides by Judy Kay

Overview
• Background principles
• Correct research
• Honourable research
• Credit and authorship issues
• Protecting oneself against others

Ethical principles
• Professional ethics
 – ACM Code of Conduct
 – ACS Code of Conduct
• Emphasise obligations to clients, community, profession as a whole

Correct research
• The rest of the community must be able to rely on your claims about your contribution
 – This allows the field to advance
• Be explicit about the evidence for your claims
• Be open and clear about limits or weaknesses of your work
Truth in research (I)

- If you say you built a system, it must exist
 - Complete and running (integrated)
 - Not just separate pieces for each aspect
- If you state performance values, they must be real and fair
 - Describe the environment in enough detail (e.g., was there other load, were the caches pre-filled, what hardware/software was used)

Truth in Research (II)

- Data must be representative
 - Don’t pick the most positive examples from several attempts
 - Don’t reason circularly (i.e., don’t use data to derive a hypothesis, or to determine key parameter values, and later claim the same data as evidence)
 - Instead, have separate training set and evaluation set

Honourable research

- Respect sources of data
 - People who were used for experiments (e.g., usability)
 - Informed consent
 - Confidentiality [make anonymous]
 - People about whom data speaks
 - Confidentiality [make anonymous]
 - People/organisations that provided information, equipment, funding etc
 - Licence conditions
 - Non-disclosure agreements
 - Possible approval process

Credit (I)

- Give credit to others
 - Cite sources you build on
 - Enough detail to find their work!
 - Use their words only in quotations (and then, be accurate)
 - Acknowledge everyone who played a role
 - Eg tech support who provided patches to compiler
 - Eg friend who proofread for language idioms
 - Eg assistant who entered the data
 - Eg someone who gave an idea that turned out to be wrong but led to solution
 - Authorship for those who provided important ideas
 - “Conceiving, executing or interpreting” part of the research
Credit (II)

- Don’t double-count
 - If there are several papers coming from the same research, make sure each has a distinct contribution, and explain what that is
 - Eg one paper describes system architecture, another presents network optimisation, another shows innovative UI
 - Cross-reference all the other work in each publication

Authorship (I)

- Discuss with supervisor
 - What is contribution of this paper?
 - Who are the authors?
- When?
 - Before writing the paper
 - Again, before releasing it (put on web, submit to conference, etc)

Authorship (II)

- Usually, supervisor will be co-author
 - If they contributed significantly (identify the problem, put the work in a framework, help refine the design or plan the experiments, write or revise substantial parts)
- Often other members of the group will also be co-authors
 - Paper may combine results from several students’ projects
 - This requires care and clarity when these results are discussed in an individual student’s thesis

Protect yourself (I)

- Conflict with supervisor
 - Can occur during thesis (eg over funding, co-authorship, commercialisation, etc)
 - Best if issues discussed before work starts (eg agreement over ownership of IP)
 - If necessary, approach School research director
 - Or Associate Dean (Research Pgrads)
 - Key is clear communication, and written records of agreements, presentation of ideas, etc
Protecting yourself (II)

• Planning for the future
 – Before you leave the university, talk to supervisor about future plans/possibilities
 – Will you continue the work?
 • What directions/extensions will supervisor give to other students (vs those you will do yourself, or give to your students)
 – Will you submit for publication?
 • Maybe supervisor will polish and submit, with both as co-authors
 • Maybe another student will continue, leading to combined publication

Protect yourself (III)

• Issues with referees, acquaintances, web surfers
 – People who see your work before publication might, if they are not ethical, publish it themselves, or improve on it
 – This can restrict your recognition
 • May even destroy your chance to get a degree!
 – Best protection is timestamped publication (eg School Tech Report)
 • Before putting on web or submitting or sending out for comment

University of Sydney Codes

• Statement by all authors
 – Accepting that they did contribute
 – Identifying one author as taking responsibility
• Preservation of data
 – In a known location for 5 years, even after individuals leave the university
• Conflict of interest
 – Identify affiliation or financial interest
• Human subjects
 – Ethics approval process
• Commercialization
 – IP created by a student belongs to the student unless signed away before project started